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Calibration equations for the estimation of amino acid composition in whole soybeans were developed
using partial least squares (PLS), artificial neural networks (ANN), and support vector machines (SVM)
regression methods for five models of near-infrared (NIR) spectrometers. The effects of amino acid/
protein correlation, calibration method, and type of spectrometer on predictive ability of the equations
were analyzed. Validation of prediction models resulted in r 2 values from 0.04 (tryptophan) to 0.91
(leucine and lysine). Most of the models were usable for research purposes and sample screening.
Concentrations of cysteine and tryptophan had no useful correlation with spectral information.
Predictive ability of calibrations was dependent on the respective amino acid correlations to reference
protein. Calibration samples with nontypical amino acid profiles relative to protein would be needed
to overcome this limitation. The performance of PLS and SVM was significantly better than that of
ANN. Choice of preferred modeling method was spectrometer-dependent.
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INTRODUCTION

Soybeans are a main source of plant protein for animal feed
formulation. Modern diet formulation methods balance rations
on the basis of amino acid content. This has increased the need
for the development of rapid and cost-effective techniques for
amino acid measurement.

Amino acid composition is normally determined using HPLC
(1). This method is too slow and expensive for feed formulation
and plant-breeding applications, when large numbers of samples
have to be screened. Near-infrared (NIR) spectroscopy has been
applied to amino acid analysis by several researchers with
various degrees of success.

In feed formulation research, Irish et al. (2) provided an
example of the application of NIR calibrations for comparison
of protein, lysine, and total sulfur amino acid content of raw
materials from different suppliers. The authors showed that this
rapid analysis allowed for more efficient ration formulation
through the detection and reduction of variation in feed
ingredient composition. Van Kempen and Simmins (3) evaluated
NIR technology for the estimation of digestible amino acid
content in several feed ingredients of animal origin. Cross-
validation of their calibration models for the prediction of lysine
and methionine resulted in determination coefficient (r2) ranging
from 0.80 to 0.95.

In grain-related research, Williams et al. (4) reported satisfac-
tory results (r2 ) 0.66-0.96) in correlating NIR spectral data

of ground wheat and barley to their amino acid concentrations.
Wu et al. (5) showed the applicability of NIR spectroscopy for
the amino acid analysis of milled rice powder. In their study,
most of the amino acid calibration models had high determi-
nation coefficients (r2 ) 0.85-0.98), except for those of cysteine
(r2 ) 0.78), histidine (r2 ) 0.65), and methionine (r2 ) 0.10).
An experiment conducted by Pazdernik et al. (6) demonstrated
that the accuracy of NIR screening for amino and fatty acid
concentrations in soybeans may be improved by grinding seed
samples. In a large study of amino acid profiling in ground grain
samples and various feed ingredients done by Fontaine et al.
(7, 8), r2 values of 0.84-0.98 were obtained for soybeans and
soybean meal. Overall, the predictive ability of amino acid
calibration models was dependent on the type of grain, sample
form (whole grain or ground), and specific amino acid. In
addition, as suggested by Baianu et al. (9), the accuracy of NIR
measurement of amino acids in soybeans may be affected by
close correlation between some amino acids and total protein
content. However, little is known on the effect of calibration
(regression) method and the type of NIR spectrometer. The
effect of correlation of amino acid concentration with protein
has also not been studied in detail. Therefore, the objectives of
this experiment were to (i) develop calibration equations for
estimation of amino acid composition in whole soybeans using
three linear and nonlinear regression methods for five models
of NIR spectrometers and (ii) analyze the effects of amino acid/
protein correlation, calibration method, and type of spectrometer
on the predictive ability of the equations.
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MATERIALS AND METHODS

Raw Data.A calibration set of 526 soybean samples from the 1997-
2001 crops and a test set of 147 samples (both sets contained various
lines from all regions of the United States) from the 2002 crop were
used for model development and testing. NIR spectra of the whole
soybeans were obtained from five NIR spectrometers: FOSS Infratec
1241 Grain Analyzer (FOSS North America, Eden Prairie, MN);
DICKEY-john OmegAnalyzerG (DICKEY-john Corp., Auburn, IL),
Perten DA 7200 (Perten Instruments Inc., Springfield, IL), Bruker
Optics/Cognis QTA (Bruker Optics Inc., Billerica, MA, and Cognis
Corp., Cincinnati, OH), and ASD LabSpec Pro (Analytical Spectral
Devices Inc., Boulder, CO). Specifications of the instruments are
provided inTable 1.Figure 1 illustrates NIR scans of the same soybean
sample obtained with the five spectrometers.

The following 18 amino acids were considered in this study: alanine
(Ala), arginine (Arg), aspartic acid (Asp), cysteine (Cys), glutamic acid
(Glu), glycine (Gly), histidine (His), isoleucine (Ile), leucine (Leu),
lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro),
serine (Ser), threonine (Thr), tryptophan (Trp), tyrosine (Tyr), and valine
(Val). Their concentrations were determined at the Experiment Station
Chemical Laboratories, University of Missouri, using official method
AOAC 982.30 E (a,b,c) Ch. 45.3.05 (1). The crude protein content of
the soybean samples was measured at Eurofins US laboratory (Des
Moines, IA) using method AOCS Ba 4e-93 (10). Statistics of reference
amino acid and protein concentrations, including standard error of
laboratory (SEL), are given inTable 2. SEL was calculated as

whereyij is thejth replicate of theith sample,yjj is the reference method
mean value of all the replicates of theith sample,N is the number of
samples, andR is the number of replicates. Only those samples that
had obviously erroneous spectra and/or concentration values were
considered to be gross outliers to be excluded from calibration and
test sets.

Table 1. Specifications of the NIR Spectrometers

instrument

characteristic
FOSS Infratec 1241

Grain Analyzer
DICKEY-john

OmegAnalyzerG Perten DA 7200
Bruker Optics/
Cognis QTA

ASD
LabSpec Pro

technology scanning monochromator,
Si detector

scanning monochromator,
Si detector

InGaAs photodiode
array

FT-NIR, RT-PbS
detector

Si and InGaAs
photodiode
arrays

mode transmittance transmittance reflectance reflectance reflectance
spectral range 850−1048 nm 730−1100 nm 950−1650 nm 12000−4000 cm-1

(833−2500 nm)
350−2500 nm

spectral resolution 7 nm not available 3.125 nm/diode 2−256 cm-1 a 3 nm, 10 nm
sampling interval 2.0 nm 0.5 nm 5.0 nm 7.7 cm-1 1.4 nm, 2.0 nm
no. of data points 100 741 141 1037 2151

a Spectral resolution of 16 cm-1 was recommended by the manufacturer for this study.

Figure 1. Normalized NIR scans of the same whole soybean sample obtained with five spectrometers.
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Table 2. Statistics of Reference Amino Acid and Protein
Concentrations (Percentage of Total Weight on Dry Basis) in
Calibration and Test Soybean Samples Used in This Experiment

constituent
r 2 with

crude protein
min,

% DB
mean,
% DB

max,
% DB SD SELa

Ala 0.82 1.46 1.79 2.13 0.128 0.015
Arg 0.87 2.21 3.17 4.44 0.397 0.017
Asp 0.91 3.59 4.79 6.03 0.470 0.031
Cys 0.37 0.52 0.70 0.86 0.063 0.013
Glu 0.83 5.36 7.66 10.18 0.868 0.097
Gly 0.88 1.38 1.77 2.15 0.143 0.013
His 0.82 0.91 1.15 1.41 0.096 0.013
Ile 0.76 1.47 1.94 2.36 0.172 0.022
Leu 0.90 2.47 3.26 3.95 0.274 0.028
Lys 0.87 2.15 2.69 3.28 0.200 0.018
Met 0.53 0.48 0.61 0.76 0.048 0.010
Phe 0.88 1.54 2.16 2.68 0.207 0.015
Pro 0.73 1.46 2.04 2.65 0.225 0.024
Ser 0.60 1.43 1.92 2.58 0.209 0.039
Thr 0.75 1.29 1.62 1.96 0.117 0.010
Trp 0.20 0.32 0.50 0.66 0.064 0.032
Tyr 0.82 1.18 1.53 1.83 0.129 0.015
Val 0.73 1.51 2.06 2.54 0.186 0.027
crude protein 1.00 33.82 43.16 54.61 3.960 0.337

a Standard error of laboratory; for SEL calculation details, refer to Materials
and Methods.

3486 J. Agric. Food Chem., Vol. 54, No. 10, 2006 Kovalenko et al.



Multivariate Modeling. Three regression methods, partial least
squares (PLS), artificial neural networks (ANN), and support vector
machines (SVM), were used in this work.

PLS.PLS_Toolbox 3.0 (Eigenvector Research Inc., www.eigenvec-
tor.com) for MATLAB (The MathWorks Inc., www.mathworks.com)
was used for PLS modeling. The number of latent variables was selected
using five-block cross-validation on the training set. For a detailed
description of PLS regression refer to Næs et al. (11).

ANN.Neural Network Toolbox for MATLAB (The MathWorks Inc.,
www.mathworks.com) was used for development of ANN calibration
models. Feed-forward back-propagation networks were trained on 80%
of the available training samples. The other 20% of the training set
was utilized as an early stopping set to prevent overfitting during
training process. Input dimensionality was reduced by PCA. The best
number of network inputs (principal components) and number of
neurons in one hidden layer was determined by five-block cross-
validation on the training set. A tangent sigmoid function and linear
function were used as activation functions of hidden layer neurons and
an output neuron, respectively. For more details on the ANN method
refer to Haykin (12), Cherkassky and Mulier (13), Borggaard (14).

SVM.Least-squares implementation of SVM algorithm (LS-SVM)
and LS-SVMlab1.5 toolbox for MATLAB developed by Suykens et
al. (15) were utilized for this part of the experiment. The radial basis
function (RBF)

whereσ2 is the RBF bandwidth, was used as a kernel function. The
best pair of complexity regularization parameter (required for model
training) and RBF bandwidth for every amino acid was determined by
five-block cross-validation on the training set. More information on
SVM may be found in Suykens et al. (15), Vapnik et al. (16), Smola
and Scholkopf (17), Cogdill and Dardenne (18).

Data Preprocessing.Two methods for reduction of the light scatter
effect, multiplicative scatter correction (MSC) and differentiation using
Savitzky-Golay algorithm (19), were considered as primary pretreat-
ments for spectral data. On the basis of preliminary results, we expected
differentiation to be superior due to its universal applicability to all
calibrations, regardless of regression method and spectrometer. Optimal
combination of Savitzky-Golay algorithm parametersswindow size,
polynomial order, and derivative order (first or second)swas established
on the basis of standard error of cross-validation of PLS calibrations.
Because determining optimal parameter sets for all three regression
methods was not feasible due to the amount of computation time
required, PLS optimization was done at the potential expense of limiting
the other calibration methods relative to PLS regression. The best results
were obtained with second derivative for all spectra except for
DICKEY-john data, which required only first-order derivation. This
was most likely because raw spectra from this instrument had already
been corrected for baseline shift by the instrument software.

In addition to differentiation, spectral data (wavelengths) from all
instruments were normalized to have zero mean and unity standard
deviation. For more details on data transformations for each spectrom-
eter refer toTable 3.

Univariate Regression against Crude Protein.As can be seen from
Table 2, most of the amino acids are strongly correlated with crude
protein. This indicates that most of the amino acid concentrations could
be derived from known reference protein values. To assess the accuracy
of this prediction method (and to compare it with NIR calibrations),
linear univariate regression equations for every amino acid were
developed and tested using samples from NIR calibration and validation
data sets.

Model Validation. An independent test set of 147 samples was
applied to all calibration models, and the following parameters
characterizing their predictive ability were computed: (i) coefficient
of determination,r2; (ii) standard error of prediction corrected for bias,
SEP; (iii) bias or mean difference between NIR-predicted and reference
concentrations,d; and (iv) relative predictive determinant, RPD.
Definitions of these parameters can be found in Williams and Norris
(20) and in the AACC NIR calibration guideline 39-00 (21).

RESULTS AND DISCUSSION

Overall Observations.Validation of the developed calibra-
tion models (PLS, ANN, and LS-SVM) resulted in coefficients
of determination,r2, ranging from 0.04 for Trp to 0.91 for Leu
and Lys (in terms of RPD coefficients, predictive ability of the
equations extended from 0.98 for Trp to 3.29 for Leu). On the
basis of guidelines for interpretation ofr2 outlined by Williams
and Norris (20), the division of NIR calibration models was as
follows: (a) r2 ) 0.00...0.25, unusable models, Trp; (b)r2 )
0.26...0.49, poor correlation models, Cys; (c)r2 ) 0.50...0.64,
models usable for rough sample screening, Met and Se; (d)r2

) 0.66...0.81, models usable for sample screening, Ala, Glu,
Ile, Pro., Thr, and Val; (e)r2 ) 0.83...0.90, models “usable with
caution for most applications”, Arg, Asp, Gly, His, Leu, Lys,
Phe, and Tyr. (Note: due to rounding off, there are nor2 values
of 0.65 and 0.82.)

Because of correlation betweenr2 and RPD

from personal communication with David B. Funk (22), the
same classification of models could be derived from RPD
values. Converting RPD intor2 space and removing discontinu-
ity due to rounding-off error give (a) RPD) 1.00...1.15,
unusable models, Trp; (b) RPD) 1.16...1.40, poor correlation
models, Cys; (c) RPD) 1.41...1.70, models usable for rough
sample screening, Met and Ser; (d) RPD) 1.71...2.42, models
usable for sample screening, Ala, Glu, Ile, Pro, Thr, and Val;
and (e) RPD) 2.43...3.54, models “usable with caution for
most applications”, Arg, Asp, Gly, His, Leu, Lys, Phe, and Tyr.

The results of the experiment in terms of validation RPD and
SEP of NIR calibration models (PLS, LS-SVM, and ANN) for
five spectrometers are provided inTables 4-8.

Attempts to explain the variation in models’ predictive ability
by correlating RPD of a specific calibration method to such
properties of amino acids as average reference concentration in
soybeans, relative variation of concentration (range divided by
average), molecular weight, solubility in water, and isoelectric
point did not result in any reliable relationship. However, when

K(x, xk) ) exp(-||x- xk||2/σ2), (2)

Table 3. Transformations (in Sequential Steps) Applied to Absorbance
Data from Five Spectrometers

instrument spectral data preprocessing

FOSS Infratec 1241 (1) second derivative (5, 3)a

Grain Analyzer (2) normalization

DICKEY-john Omeg- (1) first derivative (17, 2)
AnalyzerG (2) normalization

Perten DA 7200 (1) second derivative (5, 3)
(2) normalization

Bruker Optics/ (1) delete noisy data points in the range
of 12000−11533 cm-1 (833−867 nm)

Cognis QTA (2) smooth (37, 2) noisy spectra in the range
of 11533−8910 cm-1 (867−1122 nm)

(3) second derivative (25, 3)
(4) normalization

ASD LabSpec Pro (1) delete noisy data points in the range of
350−440 nm

(2) use every other wavelength for
subsequent steps

(3) MSC
(4) second derivative (9, 3)
(5) normalization

a Parentheses contain window size and polynomial order for Savitzky−Golay
differentiation algorithm.

RPD) 1/(1 - r2)0.5 (3)

Amino Acid Composition of Soybeans J. Agric. Food Chem., Vol. 54, No. 10, 2006 3487



NIR RPD values were regressed against determination coef-
ficients describing the relationship between a particular amino
acid with protein (Table 2), it became apparent that variation
in NIR models’ predictive ability was determined by how a
certain amino acid was correlated to protein, as shown inFigure
2. If an amino acid concentration can be predicted from a known
value of protein concentration, it can be estimated using NIR
spectroscopy. If the correlation is poor, as is the case with Cys
and Trp, NIR predictions will be equally inaccurate. A similar
observation about the correlation between amino acid contents
predicted by NIR and linear protein regression for soybean meal
and full-fat soy was made by Fontaine et al. (7). This implies
that NIR spectroscopy measures amino acid concentration in
whole soybeans indirectly by deriving it from the total amount
of nitrogen-containing molecules. Analysis of regression vectors
of PLS calibration models supports this statement. Most of the
regression vectors inFigure 3 follow the same pattern, which
indicates that, for the most part, the calibrations predicted
protein. Those regression vectors that fall out of the general
pattern represent low-RPD calibration models such as Trp, Cys,
and Ser. Therefore, the biggest challenge that is faced in NIR
measurement of amino acids in soybeanssand probably in other

legumes and cereal grainssis to either exceed the correlation
between amino acid and protein concentrations or assemble
sample sets that break the correlation. Future research should
attempt to address this issue by introducing calibration samples
(possibly artificially created) with unusual amino acid profiles.

In general,r2 values of this experiment were higher than those
previously reported by Pazdernik et al. (6) for both whole-seed
and ground-seed soybean samples. This could likely be attributed
to a much larger calibration set used in this study (526 vs 90
samples) and form of expression of amino acid concentrations
(percentage of total sample weight vs percentage of crude
protein). Validation statistics of NIR calibrations for Leu, Lys,
Met, and Thr in ground soybeans reported by Fontaine et al.
(7) were superior to our results; however, these researchers
reported higher correlations between protein and amino acids.
Comparison of our results with those from previous studies by
Pazdernik et al. (6), Fontaine et al. (7), Williams et al. (4), and
Wu et al. (5) suggests that grinding grain samples may improve
predictive ability of NIR spectroscopy in amino acid measure-
ment. However, it is not clear whether grinding will make NIR
predictions superior to the univariate protein regression results.
Also, on the basis of the wheat and barley study by Williams

Table 4. FOSS Infratec 1241 Grain Analyzer: Test Statistics (RPD
and SEP) of the Three Types of Calibration Models

PLS LS-SVM ANN

amino acid RPD SEP RPD SEP RPD SEP

Ala 2.22 0.05 2.18 0.06 2.33 0.05
Arg 2.60 0.15 2.70 0.14 2.59 0.15
Asp 2.88 0.16 2.81 0.17 2.82 0.17
Cys 1.25 0.04 1.24 0.04 1.17 0.05
Glu 1.87 0.52 1.89 0.52 1.81 0.54
Gly 2.65 0.05 2.62 0.05 2.53 0.06
His 2.59 0.04 2.70 0.04 2.66 0.04
Ile 2.32 0.07 2.26 0.08 2.24 0.08
Leu 3.21 0.09 3.29 0.09 3.12 0.09
Lys 2.89 0.07 2.86 0.07 2.88 0.07
Met 1.50 0.03 1.54 0.03 1.44 0.03
Phe 2.82 0.07 2.82 0.07 2.80 0.07
Pro 2.28 0.09 2.27 0.10 2.30 0.09
Ser 1.44 0.17 1.43 0.17 1.34 0.18
Thr 2.01 0.06 1.98 0.06 1.94 0.06
Trp 1.02 0.08 0.98 0.08 0.99 0.08
Tyr 2.95 0.04 2.80 0.04 2.71 0.05
Val 2.07 0.08 1.97 0.08 2.05 0.08

Table 5. DICKEY-john OmegAnalyzerG: Test Statistics (RPD and
SEP) of the Three Types of Calibration Models

PLS LS-SVM ANN

amino acid RPD SEP RPD SEP RPD SEP

Ala 2.25 0.05 2.24 0.05 2.26 0.05
Arg 2.05 0.19 2.74 0.14 2.58 0.15
Asp 2.62 0.18 2.93 0.16 2.73 0.17
Cys 1.19 0.05 0.98 0.06 1.14 0.05
Glu 1.76 0.56 1.84 0.54 1.73 0.57
Gly 2.48 0.06 2.37 0.06 2.41 0.06
His 2.69 0.04 2.93 0.04 2.59 0.04
Ile 2.24 0.08 2.16 0.08 2.14 0.08
Leu 3.02 0.09 3.23 0.09 3.03 0.09
Lys 2.68 0.08 2.96 0.07 2.79 0.07
Met 1.44 0.03 1.36 0.03 1.31 0.03
Phe 2.79 0.07 2.85 0.07 2.69 0.07
Pro 2.14 0.10 2.07 0.10 2.05 0.11
Ser 1.37 0.18 1.36 0.18 1.32 0.18
Thr 1.88 0.07 1.89 0.07 1.85 0.07
Trp 1.01 0.08 0.99 0.08 1.03 0.08
Tyr 2.70 0.05 2.79 0.04 2.67 0.05
Val 2.02 0.08 2.15 0.08 2.08 0.08

Table 6. Perten DA 7200: Test Statistics (RPD and SEP) of the
Three Types of Calibration Models

PLS LS-SVM ANN

amino acid RPD SEP RPD SEP RPD SEP

Ala 2.16 0.06 2.11 0.06 2.13 0.06
Arg 2.89 0.14 2.27 0.17 2.61 0.15
Asp 2.93 0.17 2.82 0.17 2.81 0.17
Cys 1.25 0.04 1.17 0.05 1.22 0.04
Glu 1.84 0.55 1.83 0.56 1.84 0.56
Gly 2.65 0.05 2.56 0.06 2.27 0.06
His 2.87 0.04 2.73 0.04 2.51 0.04
Ile 2.28 0.08 2.10 0.08 2.00 0.09
Leu 3.24 0.09 3.14 0.09 2.78 0.11
Lys 2.69 0.08 2.56 0.08 2.60 0.08
Met 1.51 0.03 1.42 0.03 1.37 0.03
Phe 2.79 0.07 2.75 0.07 2.56 0.08
Pro 2.19 0.10 2.19 0.10 2.12 0.11
Ser 1.48 0.17 1.46 0.17 1.38 0.18
Thr 2.10 0.06 2.09 0.06 1.84 0.07
Trp 1.09 0.07 1.03 0.08 1.05 0.08
Tyr 2.64 0.05 2.63 0.05 2.67 0.05
Val 2.10 0.08 1.84 0.09 1.91 0.09

Table 7. Bruker Optics/Cognis QTA: Test Statistics (RPD and SEP)
of the Three Types of Calibration Models

PLS LS-SVM ANN

amino acid RPD SEP RPD SEP RPD SEP

Ala 2.16 0.06 2.14 0.06 2.15 0.06
Arg 2.70 0.15 2.53 0.16 2.46 0.16
Asp 2.71 0.18 2.68 0.18 2.41 0.20
Cys 1.25 0.04 1.19 0.05 1.18 0.05
Glu 1.82 0.56 1.77 0.58 1.76 0.58
Gly 2.49 0.06 2.41 0.06 2.23 0.06
His 2.57 0.04 2.55 0.04 2.35 0.04
Ile 2.22 0.08 2.21 0.08 1.96 0.09
Leu 2.97 0.10 2.98 0.10 2.63 0.11
Lys 2.61 0.08 2.60 0.08 2.45 0.09
Met 1.45 0.03 1.34 0.03 1.40 0.03
Phe 2.62 0.08 2.90 0.07 2.60 0.08
Pro 2.17 0.10 2.15 0.10 2.05 0.11
Ser 1.43 0.17 1.36 0.18 1.25 0.20
Thr 1.87 0.07 1.82 0.07 1.70 0.07
Trp 1.07 0.07 0.98 0.08 1.01 0.08
Tyr 2.77 0.05 2.85 0.04 2.57 0.05
Val 1.97 0.08 2.04 0.08 2.03 0.08

3488 J. Agric. Food Chem., Vol. 54, No. 10, 2006 Kovalenko et al.



et al. (4), additional improvement in amino acid NIR measure-
ment may be gained by the selection of individual wavelengths
(or regions) of NIR spectrum, as opposed to using full spectrum
techniques.

As a side note, an interesting observation was made on the
effect of spectral data preprocessing for one of the tested
spectrometers. Although not normally done in practice, perform-
ing MSC with subsequent second-order differentiation improved
RPD values of ASD LabSpec Pro calibrations up to 9%
compared to differentiation alone. The advantage of additional
preprocessing for this instrument might be explained by the more
intensive light scatter in the far NIR range and the fact that this
spectrometer uses more than one photodiode array detector.

Comparison of Multivariate Calibrations with Univariate
Protein Regression.Validation results of linear protein regres-
sion models for calculation of amino acid concentrations are
provided inTable 9. Comparison of overall performance of NIR
calibrations to the protein regression was based on RPD
coefficient, which is a standardized parameter of predictive
ability. Analysis of ANOVA least squares model of the form

where AA is amino acid factor (18 levels) andM1 is method

factor (2 levels, protein regression and the best NIR calibration),
demonstrated significance of the method factor (p ) 0.0002).
Comparison of means showed that RPD of protein regression
was significantly higher than that of the best NIR calibration
(R ) 0.05). As can be seen fromTables 4-9, in no case did
the RPD of the NIR calibration (across three multivariate
methods and five instruments) exceed the RPD of protein
regression. NIR measurement of amino acid content is cumula-
tive of two components: an error of protein prediction and an
error of deriving amino acid content from predicted protein.

Comparison of Multivariate Calibration Methods and
Spectrometers.Even though the prediction of amino acids was
essentially a calculation from crude protein, comparison of
modeling methods and spectrometers was still valid, in the sense
that the results would apply to soybean measurement in general
and could still indicate greater or lesser suitability for use. The
effects of regression method and type of spectrometer on RPD
was tested using ANOVA least-squares fit of the form

whereM2 is method factor,S is spectrometer factor, andM ×
S is method-spectrometer interaction. The analysis indicated
that all factors used in the model had a significant effect (p <
0.0001) on RPD. Due to a large number of samples and
comparatively low sum of squares ofM × S, this interaction
factor was ignored (included with the error term for comparison
of means). As far as calibration methods were concerned, mean
RPD values of calibration models (based on 18 amino acids
times 5 spectrometers) were 2.19 (standard error of 0.063) for
PLS, 2.16 (standard error of 0.066) for LS-SVM, and 2.08
(standard error of 0.059) for ANN. Means of PLS and LS-SVM
regressions were not significantly different from each other, but
were significantly higher (R ) 0.05) than mean RPD of ANN.
The inferior performance of ANN could most likely be explained
by either (i) an insufficient size of training set for this method
or (ii) the use of PCA for dimensionality reduction of the input
space, which discards information on nonlinearity that is
contained in high-order principal components. Comparison of
spectrometers demonstrated a significant advantage of the FOSS
Infratec 1241 Grain Analyzer (Table 10, left column of means),
despite its short optical range and small number of spectral data
points. Additional data may be useful only if they add relatively
more information than noise.

To determine whether the same calibration priority pattern,
PLS-LS-SVM-ANN, applied to all spectrometers, levels of

Figure 2. RPD of linear protein regression models versus RPD of the best NIR calibration models. Dotted lines define RPD regions described in the
Overall Observations.

Table 8. ASD LabSpec Pro: Test Statistics (RPD and SEP) of the
Three Types of Calibration Models

PLS LS-SVM ANN

amino acid RPD SEP RPD SEP RPD SEP

Ala 2.17 0.06 1.90 0.07 1.98 0.06
Arg 2.78 0.14 2.21 0.18 2.35 0.17
Asp 2.58 0.19 2.50 0.19 2.51 0.19
Cys 1.11 0.05 1.12 0.05 1.12 0.05
Glu 1.86 0.55 1.78 0.58 1.74 0.59
Gly 2.46 0.06 2.34 0.06 2.30 0.06
His 2.62 0.04 2.71 0.04 2.25 0.05
Ile 2.02 0.09 1.76 0.10 1.86 0.09
Leu 3.11 0.09 3.07 0.10 2.52 0.12
Lys 2.81 0.08 2.85 0.07 2.32 0.09
Met 1.49 0.03 1.42 0.03 1.35 0.03
Phe 2.79 0.07 2.74 0.07 2.30 0.09
Pro 2.21 0.10 2.19 0.10 2.02 0.11
Ser 1.42 0.17 1.32 0.19 1.35 0.18
Thr 1.90 0.07 1.72 0.07 1.75 0.07
Trp 1.06 0.07 1.02 0.08 0.99 0.08
Tyr 2.56 0.05 2.64 0.05 2.30 0.06
Val 1.98 0.08 1.67 0.10 1.84 0.09

RPD) AA + M1 + error (4)

RPD) AA + M2 + S+ (M × S)+ error (5)
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method-spectrometer interaction were analyzed (Figure 4).
Results showed that the advantage of one calibration method
over the others was spectrometer-dependent. Whereas the Perten
DA 7200 and ASD LabSpec Pro had the largest differences in
the mean RPD values across calibration methods, the FOSS
Infratec 1241 Grain Analyzer showed nearly identical perfor-
mance for all methods. The DICKEY-john OmegAnalyzerG,
unlike the other spectrometers, demonstrated an advantage of
the LS-SVM method over PLS.

Because RPD variations among calibration methods were not
the same for all instruments, calibration models of the best-

performing methods (PLS for FOSS Infratec 1241 Grain
Analyzer, Perten DA 7200, Bruker Optics/Cognis QTA, and
ASD LabSpec Pro; and LS-SVM for DICKEY-john OmegA-
nalyzerG) were used to further compare th performance of the
spectrometers. Analysis of least-squares fit of the form

demonstrated significance of amino acid (as expected) and
spectrometer factors (p < 0.0001 andp < 0.0029, respectively).
Table 10 (right column of means) shows that the difference
between spectrometers became less distinct when methods were
pooled. The amino acid predictive ability of the Perten DA 7200,
which had the highest mean RPD, was comparable to that of
the FOSS Infratec 1241 Grain Analyzer and the DICKEY-john
OmegAnalyzerG, but significantly better than those of the
Bruker Optics/Cognis QTA and ASD LabSpec Pro.

An interesting observation was made by analyzing bias on
the test set. Whereas average bias of all amino acid predictions
from four spectrometers approached zero, all of the FOSS
Infratec PLS calibration models except for the two unusable
calibrations, Cys and Trp, had a negative bias, indicating that
this spectrometer tended to overpredict amino acid concentra-
tions. A completely opposite pattern was observed with this
spectrometer in combination with LS-SVM and ANN calibration
methods: all of the predictions except for Cys and Trp had a
positive bias (figure not shown), indicating that with nonlinear
calibrations the spectrometer underpredicted amino acid con-
centrations. This phenomenon could not be explained, because

Figure 3. Regression vectors of 18 amino acid calibration models (PLS regression) developed for FOSS Infratec 1241.

Table 9. Test Statistics (RPD and SEP) of Linear Protein Regression
Models

protein regression

amino acid RPD SEP

Ala 2.60 0.05
Arg 3.32 0.12
Asp 3.24 0.15
Cys 1.24 0.05
Glu 1.90 0.54
Gly 2.96 0.05
His 3.05 0.03
Ile 2.37 0.07
Leu 3.45 0.09
Lys 3.10 0.07
Met 1.67 0.02
Phe 2.90 0.07
Pro 2.55 0.09
Ser 1.53 0.16
Thr 2.24 0.06
Trp 1.09 0.07
Tyr 3.01 0.04
Val 2.32 0.07

Table 10. Mean RPD Values of Calibration Models for Five
Spectrometersa

instrument

mean RPD based
on 18 amino acids
and 3 regression

methods

mean RPD based
on 18 amino acids

and 1 best regression
method

FOSS Infratec 1241
Grain Analyzer

2.23 a (0.085)b 2.25 ab (0.150)

Perten DA 7200 2.17 b (0.080) 2.26 a (0.148)
DICKEY-john Omeg-

AnalyzerG
2.16 bc (0.086) 2.21 abc (0.166)

Bruker Optics/
Cognis QTA

2.10 cd (0.077) 2.16 c (0.135)

ASD LabSpec Pro 2.05 d (0.077) 2.163 bc (0.143)

a Means followed by the same lower case letter are not significantly different
(R ) 0.05) by Tukey HSD test. b Parentheses contain standard error.

Figure 4. Mean RPD values (based on 18 amino acids) of calibration
models grouped by spectrometers and calibration methods. Error bars
indicate ± 3 standard errors.

RPD) AA + S+ Error (6)
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the calibration and test sets were nearly identical for all
spectrometers.
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